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Let I be a finite interval, re N and p(¢) =dist{s,0I}, tel. Denote by
AW, ., 0 <a < oo, the class of functions x on I with the seminorm ||x(')/7°‘||L,, <1
for which 4ix, >0, is nonnegative on /. We obtain two-sided estimates of the
Kolmogorov widths d,(45W7, ), and of the linear widths d,,(AiW;,’a)IL’:’ s
s=0,1,...,r+1. ©2001 Elsevier Science
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let X be a real linear space of vectors x with norm |x[y, W c X,
W # &, and L" a subspace in X of dimension dim L"<n, n>0. Let
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M" = M"(x") := x"+ L" be a shift of the subspace L" by an arbitrary vector
x’e X. Let

E(x, M")y := inf |x—yly,
yeM

denote the best approximation of the vector x € X by M", and let

(11) E(Wa Mn)X ::Sup E(X, Mn)Xa

xeW

denote the distance between the sets W and M™.
The Kolmogorov n-width of W is defined by

(1.2) d,(W)y :=inf EW,M",, n>0.
inf

We also let A(X, L") be the set of all linear maps A4: X — L". Then

EW,L":= inf sup ||x—Ax|y

AeAX, L") xew

denotes the best linear approximation of the set W by L”. The linear
n-width of W is defined by

(1.3) d, W) .= inf EW,L")", n>0.
L'cXx

Let I be a finite interval in R, and let » € N and 0 < o < 00. For 1 < p < o0,
and p(¢) :=dist{z, 0I'}, t € I, we denote

Whe =W o) = {x: ] = R[x"D € A (1), Xl < 1.

If «=0, then we write W}, :=W,(I):=W/, ,(I). We also write L, for
L,(I). Let

Ax():= ) (=1)* (Z)x(t+kr), {t,t+st} =1, s=0,1,...,
0

k=

be the sth difference of the function x, with step 7> 0, and denote by
AW, =AW, (D), s=0,1, ... the subclasses of functions x e W/, , for
which 4x(t) >0, for all >0 such that [z,t+st] = 1. If a =0, then we
write AW, := AW, ((I). We also write L, for L,(I). Throughout this
paper we take the generic finite interval 7 =[—1, 1].

The behavior of the Kolmogorov and linear widths in the classical case
a =0, ie., for the Sobolev classes W, , =W, has been thoroughly inves-
tigated. We refer the interested reader to the list of references for earlier
results. We have recently proved [8],
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THEOREM KL1. Let I be a finite interval and let r e N, 1 < p, g < o0 and
0<a<oo, be such that r—a—%+$>0. If (r,p)#,1), and if (r,p)=
(L) and 1< q<2, then

d,,(W;N)Lq = n_’+(ma"{,17’%} —“‘a"{é’%})g n=r,

where (u), :=max{u, 0} and a, =b, means that there exist constants 0 <
C, < C,, such that C,a, < b, < C,a,, Vn. If on the other hand, (r, p) = (1, 1)
and 2 < q < oo, then

an<d,W! ), <cni(log(n+1);,  n>1,

where ¢, > 0 and ¢, do not depend on n.

It turns out that the Kolmogorov widths of the smaller classes 4% W", .,

0 <s<r, are, in general, of the same order of magnitude as those of the
classes W, ,. However, they are significantly smaller for the class ATIW;J.
Thus we first have

THEOREM 1. LetreN, 1<p, g<o0 and 0 <o < oo, be such that r —oa—
§+}I>O. If (r,p)# (1, 1) and if (r,p)=(1,1) and 1 < q <2, then for each
s=0,1,...,r,

(1.4) A (AW ), =<+ i o))y sy

If on the other hand, (r, p) = (1,1) and 2 < q < oo, then for s =0, 1,
(1.5) en <A (AW ), e i(log(n+1)s,  n>1,
where ¢, > 0 and ¢, do not depend on n.

But in case s =r+ 1, we prove the following.

THEOREM 2. LetreN, 1< p, g< o0, and 0 < a < o0, be such that r—o—
%+}1>0. Then

(1.6) 4, AW, == s
For linear widths we have proved the following [8].

THEOREM KL2. Let reN, 1<p, g< o0 and 0 <a < oo, be such that
r—a—3+2> 0. If (r,p) # (1, 1), or if (r,p)=(1,1) and 1<q<2, and if
(r,q)=(1,00) and 2 < p < oo, then

dy 5 = Gl G G s
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If on the other hand, (r, p) =(1,1) and 2 < g < o0, then
an<d,W )" <eni(logn+1));,  nxl,
and if (r,q)=(1,0) and 1 < p <2, then
cln‘%sdn(W},,(1 n <oni(logn+1)):, nx1,

where ¢, > 0 and ¢, do not depend on n.

We have here the same phenomenon as for the Kolmogorov widths;

namely, the linear widths of the smaller classes 45W, ,, 0 <s<r, are, in

general, of the same order of magnitude as those of the classes W/, ,
However, they are significantly smaller for the class 47"'W’, ,. Here we
have

THEOREM 3. LetreN, 1<p, g<ooand 0 <a <o, be such that r—a—
s> 0. I (o p)#(L 1), or if (r,p)=(1,1) and 1 <q<2 and if (r,q) =
(1, ©0) and 2 < p < oo, then for each s =0,1, ..., r,

A7) d ()i =< n 7+ GG G
If on the other hand, (r, p) = (1, 1) and 2 < g < oo then for s =0, 1,
(18)  en <A, (AW )8 <en(logn+1);,  n>1,
and if (r,q)=(1,0) and 1 < p <2, then for s=0, 1,

(1.9) en 1 <d, (AW ) <enr(logn+1)),  n>1,

where ¢, > 0 and ¢, do not depend on n.

And in case s = r+ 1, we show that

THEOREM 4. Let reN, 1<p, g<o0 and 0 <a< oo, be so that r—a—
;{+$>O. Then

(1.10) d,( 47w =i s
Remark. Note that for each fixed ¢ and all p such that r—oc——+ >0,

the Kolmogorov and linear widths of the classes A’“W , are of the same
order of magnitude.
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2. KOLMOGOROYV WIDTHS OF THE CLASSES 4°W", ,
IN L -AUXILIARY LEMMAS

For ne N and 1< p<oo, let /; denote, as usual, the space of vectors
x=(xy, ..., X,) € R" with the norm

1
n -
<Z |x,-|P>”, 1<p<oo,
ol = ¢ \i=1

max |x;], p =0,
i=1, n

1=1,..

and let B be its unit ball. We recall the following lemmas.

Lemma KPS (See [7, 13, 16]). Let m, n e N be such that m <n. Then
m\:
(= (1))
n

LemMa G1 (See [1]). Let m, ne N be such that m < n, and set
{ ; < m>(,‘,—;)/(§—1)}
max<{nir|1l—— R
n

if 1<p<gq<2,
max {n;_:), min{1, n;m‘;}< 1 —T>2},
n

if 1<p<2<g<om,
1 1

(min{1, nim3}) G-/ G-,

if 2<p<g<oo.

2.0 Dd(m,n, p,q) =

e~

Then for any 1 < p<q < o,
(22) dm(B;)IZ = ¢(ms n, p, q)a
where the constants in these two-sided estimates are independent of m and n.

Lemma K (See [5]). Let m, ne N be such that m <n. Then

2.3) d,(BY)y. <cm™ < 1+log %)

where ¢ > 0 is an absolute constant.
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Finally,

LemMMA PS (See [14] and [17]). Let m, ne N be such that m <n. Then
forany 1 <qg<p<oo,

1 1
24) d,(BL)s = (n—m)i~s.
We need some more lemmas and begin with some notation. Let Y":=
{y®}7_, be a system of vectors in X, and let 1 < p < oo. The set

Sr(Y"):= {y ly:=Y a,y? a=(a,..,a,)eR"

i=1

a; = 0, i= 19 - 1, "a”l; < 1}7

is called a positive p-sector over the system Y” in X, and we denote
—S;(¥"):={y| —yeS;(Y")}. The following lemma is a consequence of
Lemmas KPS and PS.

LemMa 1. Let m, ne N be such that m<mn, and let 1<p, g<oo.
If E":={e®};_, denotes the standard system of the vectors e =
(1,0,...,0),...,e™=(0,...,0,1) in R", then

2.5  d,(S;(E™); >max {% n=r(n—m)s, (1 —mTH>} nG3)+.

Proof. First n™'/?S}(E") = S} (E"), where we observe that S%(E") is
just the L, ball of radius i about x°=(3,...,3). Thus, by virtue of
Lemma PS, it follows that for every 1 < p, ¢ < oo,

26) d,(S3 (") > n™sd, (SH(E")s
= %n‘%(n—m)%.
At the same time,
d(ST(E")iz = dyyii (B2

For B! is the convex hull of S} (E") U —S{(E"), and we approximate it at
least as well by the linear span of the m-dimensional linear manifold, which
is in general of dimension m+ 1. Hence by Lemma KPS we have

m+1\>
du(T(EN > (1-"22 ),
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and since S} (E") = S, (E"), 1 < p < 0o, we conclude that
1
(57 EN > 1 —ﬁ> .
n

If1<g<2,then ||x||,; = ||x[|;z, so that

1
2.7 a, (S, (EM)p = <1——m+ > , 1<p<oo,
7 n

and if 2 < ¢ < oo, then ||x|z > n'/*""/?||x||;; whence

28) st EYe st (12" i pcm
» (B - p

Combining (2.6) through (2.8), completes the proof of Lemma 1. ||

Next we have

LemMa 2. Let neN and 1<p, g<oo. Given a;>0, and b, >0,
i=1,..,nlett:= (1, ..., 1,) belong to the set

(2.92.= {r:ri>0 <pr<élrl>> } 1<p<om,

P

{r:7,20,1<i<n, max b7, <1}, p=00.
1<i<n
Let
n 1
<Z a,ffr;f)”, 1<g<oo,
(2.10) So(7) i=( \i=t
max a;z;, q = 0.
1<i<n

Then setting a, ., :=0 and%+§ =1,

1

<z (lai_ai+1|bi_1)p,>p’7 I<p<oo,
(2.11) max fq(T)< i=1
1eT,

<% max |ai_ai+1|b;1’ p=1
1<i<n

Note that the estimates in (2.11) are independent of q.
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Proof. Since

1

n - n
q
<Z a?f?) <Y ar, 1<g<x,
i=1 i=1

we may assume that g = 1. Thus substituting

0, :=b,-( > rk>, i=1,...n
k=1
ie, t©,=b"0,, 1,=b7'0,—b"0,_,, i=2,..,n,

and then applying the Abelian transformation, (2.10) takes the form

§0)i=£i()= 3 (@—a.) b0,

where g, ,, := 0, and the set T, of (2.9) becomes
1

{0<b1191< <b,,10,,,<z 05’)’{1}, 1<p<oo,
i=1

{0<bi'6,<--- <b,'0,, max 0, <1}, p= 0.

1<i<gn

0,.=T,=

p

Clearly @, < B} ; thus we will instead estimate the linear functional g(6),
over the bigger set. But this is just the norm |||, that is, (2.11). |

Finally, the following lemma is straightforward.
LemMma 3. LetreN, 1<p, g<oo, and 0 <a<oo be such that r—a—

3+:>0. Then x€ A'S'W', , if and only if x"~V € AC,,, and it is convex in I,
Ix®p*|,, < 1, and x© is equal a.e. on I to a nondecreasing function.

3. KOLMOGOROV WIDTHS OF THE CLASSES A4, W", ,,0<s<r

We begin with a construction that will be used in proving the lower
bounds in Theorems 1 and 2. To this end, let m, N e N and set J,, y :=
Genw- Now let

tun,ii=—141i0, y, i=0,1,...,(m+1)N,

and

Im,N,i = [tm,N,(m+1)(i—1)’ tm,N,(m+1)(i—1)+l]9 i=1,..,N.
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Foreachi=1,..., N, set

3.1)

] . m
U, g, i(1) = 5mf’N nl (=t 5, me1)i-1)T —E =t N e 1)1 +1)F)s
so that

0, E<lu N (m+1)Gi-1)5

(32 Yo ()= 0,7 (E =0 N, mr1)i—1))>

m,p,N,i
. tm, N, m+1)G-1) < 1< tm, N, (m+1)(—1)+1>
1-1
6m,11\)7’ E> by Nmt1)Gi—1)+15
and
(3.3) Yoy n.i(t) = {0’ 1 E<tp, one1i-n A>Ty s yi-n+15
. m,p,N,i - —
5mf’N, Lo N, ma 1)G=1) <E <l N, (mt1)i=1)+1-

It is clear that y,, , v,(-) € 43 W7, s=0,1, ..., m. Evidently, for all i, j=
L,..,N,

.[1 Ag‘M,Nl//m,p,N,i(t) dt

m, N, j

5m, ‘sm,
=[ T [ T 4 dry e dey
i 70 0

I, N, j

so that it follows from (3.3) that

(3.4)
‘sm,N ‘sm,N

j f j Y G+ T T, dryed, dE =0, jA£I

Lyn,j 90 0

On the other hand when j=i we take t€ I, ., and for 7:= (7, ..., 7,,), We
denote

Suni (D) ={T|1, =0, 1<k<m, 1+ 47, <ty mr1i_n+1 —1}-
Then

Sm,N,i(t) = (tm,N, (m+1)(—-1)+1 _t) ST(E’”),
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and Y7 v (147, + - +71,) =0if T¢ S,  ,(¢). Thus by (3.3) we obtain

m,p,N,i

Om, N Om, N
G5 [ [ [T T ) dey ey, d

m, N, i

= | [ arar

I, N,i ¥ Sm,N,i(t)

1

_1
=5m,pN% ., »(tm,n,(m+1)(i—l)+1_t)mdt
1 1
=—5m+1—;
m+1 ™Y
Hence
(3.6) . " o
—msie1 m _ "o (m PTG il
2 5;In,N ‘Lm,N,i Aém,Nlpm,p,N,i(t) dt = (m+1)!< 2 > N P4

11
247> 11

= m (m+ 1)_m+l’ q N_m+%_$.

Define the discretization operators

Lysx—> A,y ,x:=(y,...yy) €Ly,

by setting
1
(3.7) Yy =276 ) L A7 x(tydt,  j=1,..,N,
m, N, j
where
Ly, ' = (o N nr 0G=1s bn N e ny—n+1)s J=1,.., N,

sothat |I,, y ;| =0, ». Thenforxe L,
(3.83) ¢z, = 14, v, o Xl
Indeed, for 1 < g < oo, it follows by Holder’s and Jensen’s inequalities that

q

q

j A7 x(t) dt
. ,

m, N, j

j 5 (—1)’”"‘<,Z>x(t+k5m,N)dt

mN,j k=0
<(

m q
<k [ xtr+ks, dt>
0 mN,j

ki::
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<2l $ 2 ()] ek,
o k=0 k) '

m, N, j

<2msl Zf ek, )l dr,

which in turn yields

(é ij|q>1 q <§ “maga-
(2 2.,
= (J, wor df>q = I,

and (3.8) is proved for 1 < ¢ < o0. If ¢ = o0, then

.

L A7 x(t)dt

m, N, j

|x(z+k5m,N)|qdz>"

max |y;|= max 279,y
1<j<N 1<j<N

j 7 (1) dt

In, N, j

< max 27070 3 (0] ate kol d

1<j<N o\ k

< max - |x(2)] = [|x],,
—1<i<1

and (3.8) is proved for g = co.
We are ready to prove Theorem 1.

Proof of Theorem 1. Since AW’ , =W, ., obviously the upper bounds

in (1.4) and (1.5) follow from Theorem KL1. Thus we have to prove only
the lower bounds. Then again, in view of the inclusion 4\W’, = AW, .,
0 < o < 00, it suffices to prove that

(3.9) d (A7), » enr+ (onpf oG5

Set Y, :={y, , x.:(:)}/\_,, where ¥, , v, was defined in (3.1) with m =r,
and denote by S} (¥} ,) the positive p-sector over the system ¥ ,. Then it
follows by (3.3) that S} (¥ ,) = AW’ foralls=0, 1, ..., . Hence

(3.10) d (LW ), = d,(Sy (P )i,
Denote

‘PSI)qu rN,ql//r,p,N,i(')ﬁ i=19~--3N
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andlet ¥, :={y? v} ,. Then (3.8) implies
(3.11) d,(Sy (P e, Zd (S (7, I
If we set
25
1) 7" e
rp.q (r+ 1)' ( + ) >

then from (3.6) we get

Yo C.,  N7*rie®  i=1,.., N,

rnpa. N = “rpgq

where we recall that e® = (0, ...,0, 1,0, ..., 0) (with the 1 in the ith coor-
dinate), so that

!
SrW@Y, )=C,, N7 S (EY).

In conclusion,

(312) dn(S;( r,p, q))L r I A q r+p_§d (S+(EN))I s

which by virtue of (3.10) and (3.11) becomes

d (W), >C,, N 7H70d, (S5 (EY)r,  0<s<r.

np.4q

Finally, substituting N = 4n, we get by (2.5)

d(L5W),, = en ™5 id, (7 (E))o

>cn’+;;max{%(4n);(4n—n)fll,<1——> (4n)~ G0+ }

>cntr max{n‘%%, n=G-0)- }

cn—r+(max{%,%}—max{%,%})+’ ne N’

where ¢ = ¢(r, p, q). This completes the proof of (3.9) and concludes the
proof of Theorem 1. ||

4. KOLMOGOROV WIDTHS OF THE CLASSES 47*'W", ,

It is not surprising that we have smaller widths for these classes, as the
elements in 47"'W’, , have a nondecreasing rth derivative thus their r+ 1st
derivative exists a.e. and is locally in L, in I. Indeed, we are using this in
both directions in the following proof.
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Proof of Theorem 2. We begin with the shorter proof of the lower

bounds in (1.6). Since A7'Wl, < AW, ,, 0 <a <o, it suffices to prove
that

@.1) a4 W), zen e, sy

To this end recall the functions ¥, , y; from (3.1) with m=r+1 and
p=1.Then by 3.2), [y}, \ v, =1, s0 that §, , , v, € 47 'W7,. Hence,
if we denote ¥}, := {Wr+111v1( )}, 1, and we let ST(¥),.,) be the

positive 1-sector over the system ¥}, ,, then S} (‘P,H’I)CA’“W;O,
whence

(4.2) d (AT W)y, 2 d, (ST ),
Now we apply the discretization operqtors A, 1, N4> Which were defined
by (3 7) with m_r+1 to Obtain lpr+1 1,¢,N * _Ar+1 N, ql//r+1 LN, z( ) i=
1,..,N, and the system ¥}, g = {lp,H LN.g . Then like (3.10), it
follows by (3.8) that
d, (Sn(quﬂ 1))L >d, (S+(¥Ir+1 1, q))lf]-
Now, by virtue of (3.12) we have
d, (ST, = Crir 1, NP0, (ST(EM)),.
Therefore, taking N = 4n and combining with (4.2), we obtain
d (Ar+1Wr )L >cn r—qd (S+(E4n)) n
1 1 1
= cn~""7max {5 (4n)~" (4n—n)q, <1 nt ) (4n)~ -G-9)-+ }

cn_’_ma"{%’%}, neN,

where ¢ = ¢(r, q). This completes the proof of (4.1).

We now turn to the proof of the upper bounds. We apply an extension
of ideas of V. M. Tikhomirov for obtaining the Kolmogorov widths of the
classes AiW}, in L,. We are indebted to Tikhomirov for improving our
previous proof of this direction. Following Tikhomirov, we reduce our
problem to that of the isoperimetric problem in R”. We fix

(4.3) ﬂ><r+l><r—a—l+l>_l
q P 9
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and let
—7\A8
1—<u> , i=0,1,...,m,
n
4.4 t .=t -
( ) n,i B.n,i n+l ) .
_1+ - s l=—n,...,—1.
n
Set
t'—5tni, i=1,...,n,
(45) I”i:=1ﬂni:= [n,t 1 ,] ‘
’ ” [tn,i’ tn,i+l]a 1=—n, ..., —1

Denote by /, , ,(x;1),tel, i= t1, ..., +(n—1), the Lagrange polynomials
of degree r, which interpolate x € ATIW;N at the r+1 equidistant points
t, i k=0,1..., r partitioning I, ;, that is,

Lo iCesty i) =x(2, 1), k=0,1,...r, i=+=1,..., +(n—-1),

and set

L ,.i(x;0), tel,;, i=+1,..., +(n-1),

O, a(x50) =4 " '

lr,n,i(nfl)(x; t)a teIn, +n-

We first prove that
1

(4.6) sup  [Ix(-) =0, (x;- )|, Sen”y,

xeATIW;’a

where ¢ = c(r, a, 5, p, q).

To this end, if x e 47"'W?, ,, then by Lemma 3, x“~" is convex and x®

in nondecreasing, so that we may take an rth degree polynomial z,(x;-)
such that its (r— 1) st derivative is tangent to x“~ at 0, namely,
2y P (x;0)=x"00), a7 V(g <xC0(),  tel,
and the constant 7 (x; ) = 7 (x; 0) satisfies
x9(0) <7 (x; 1) < x(0).
Thus, let
X(2) :=x(t)—m,(x; 1), tel,
and we clearly have

xv(t)_ar,n()é; t)zx(t)_ar,n(X; t)s tel.
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Since x™ is nondecreasing, it readily follows that
1XPpH,, <3 1xVp%,,  xedF'W, ..

Indeed, if 7 (x;0)>0, then we use the inequality 7" (x;¢) <x?(0) <
xP(¢) a.e. in [0, 1). Hence
X702, < IxPp%lz, + 7 pollz,
— [[x@ px ") o
=[x"p ||L,,+2 =" p ||L,,[o,1]

) Ho ) Ho
x"p ||L1,+2 x"p "LI,[O,I]

Otherwise 77 (x; 0) <0, so that 70 (x; ) > x"(0) = x“(¢) a.e. in (-1, 0],
and the proof is similar.
It is well known that by Whitney’s theorem [20], we have

I .
max |X(¢)—1, . :(X;1)| <cco,+1<)5;M v i>, i=+1,.., +(n—-1),
tel, " r+17"

where ¢=c(r) and w,,,(x;9;[a, b]) is the usual (r+1)st modulus of
smoothness of x with step J, in the interval [a, b]. Thus for x € A?IW;M,
ift>0issothat {z,t+(r+1) 7} €1, ,;, 1 <i<n—1, then

T

|47 X%(0)| = |j ff A Z(t 1+ - +71,) dr, - dr,
0 0

<j j A XDt 47,4 - +1,)| dr, - d,
0 0

< |1, 44" esssup (X)) —x7(t,)) = |1, +il” @y 0 4is
t, €l 4

implying that

max |)E(t)_lr,n,i(i; t)l <c |In,i|rwr,n,ia i= ilr [EET) i(n_l)a

tel, ;

where ¢ =c(r). In view of the definition of g, , we conclude that for all
1<g< oo,
4.7)

[1%( ‘)_O'r,n(?z; : )"Lq(In’,-) = ||%( ')_lr,n,i(xv; : )"Lq(l,,’,-)

<cll |™"iw, ., i=+1, .., +@—1).
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In order to estimate the norm of X(-)—o, ,(X;-) in L, (I, .,), we denote by

r—1 (t—t )s
< < n—1
erfl(x; tn,nfl; t) = Z x(S)(tn,nfl) %
s=1 .

the Taylor polynomial of degree r— 1 of X. Then

i(t)_ar,n(xv; t) =xv(t)_lr,n,n—1(xv; t)
:xv(t)_er—l(xv9 tn,n—l; t)_lr,n,n—l(i(')_er—l(i; tn,n—l;'); t)9

whence

1XC-) =00, (X5 )iy, 0 S NEC) = 0,1 (X5 20 15 )y,
q\°n, q\’n,

+ "lr,n,nfl()z-( ) ) _0,,1(.72; tn,nfl; . )9 . )”Lq(I,,’,,)'

It is readily seen by Minkowski’s inequality (applied to the parameter q)
and Holder’s inequality (applied to the parameter p) that

o < PV S S
IX(-)—0,_,(%; Lino1s )”Lq(l,,,n) <c |In,n|r "t ”x(r)/’a”L,,(I,,‘,,),

where ¢ = ¢(r, a, p, q). It should be noted that in the above we use the fact
that r—oc—%+é > 0. Since

(o] |In,n71| < |In,n| < (&) |In,n71|s
where ¢, =c¢,(r, a, B, p, q), ¢, =c,(r, a, S, p, q), it follows that

”lr, n,n—1 (x“( : )_ Hr—l(xv; tn,n—l; . ))”Lq(ln’n)

1 ~ 2
<c |In,n|a [X(-)—6,_,(%; Lino1s )”Lw(I,,’,,,])
1.1
< c |In,n|r_a_;+q ”x(r)pa”Lp(ln',,_l)’

where ¢ = c(r, a, B, p, q). Recalling that [|¥”p?|, < 3, we conclude that
1,1

(4.8 1%C-) =0, n (X5 I,y S Nul ™ 775

where ¢ = ¢(r, a, 8, p, q). Similarly

5 5 eyl
4.9) [%C-) =0, n(F5 Myt ) S € o —al ™77,
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where ¢ = c(r, a, f, p, q), so combining with (4.7) and (4.8) yields

(4.10)
[l( ')_Ur 2065z 00,11

1
q a1yl
(Z |Int|n1+1 rnz> +C|In,n|r : p+qs

i=1
1
¢ max | n,il rnt+c|1 |r on——,

1<i<n
and similarly,
[lx(-)— a, 2 (X5 )”Lq[—l, 0]

-1 1
a _a—igl
C< Z |[n,i|rq+1w;1nz> +C|In,—n|r : P+q’

< i=-n+l1

1
c max |In,i|r wr, n,i +C |In, _nlr—a—;’

—n<i<-—1

where ¢ = c(r, a, 5, p, q).
On the other hand, if 1 < p < o0, then

n 1
- o ?
”x(r)/)“"L,,[o, 11= < z ||x(r)/7m||1£,,(1,,,,-)>

i=1
1

n—1
- P
> (3 B, )

Note thatae.inl, ;. ,, 1 <i<n—1,

so that for each 1 < p < oo,

||,0a||Lp(1,,,,-+1) Z (ONSEES ||35(')Pa||LI,(1”,,-+1)-
j=1

Hence, for p = oo,

i

4.11) max 37 lp* "Lw(ln 1) Z @y < 1,

1<ig<n—-1 j=1

1<g<oo,

q = 0,

I<g<oo,

q = 0,
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and for 1 < p < o0, we have

1

n—1 i 7\;
<z "pm"IL’p(ln’Hl) (Z a)r,n,j> > < ”x(r)pa”Lp[O,l] <3
21 i=1

or

1

n—1 i P\ -
“.12) (2 3 1o (z w) )”< L
i=1 j=1
Similarly, for p = o,

4.13) max 37 o, 1)2 @y <1,

1<ig<n-1 j=1

and for 1 < p< o0,

i P\}
4.14) <z 37 p" "LI,(I,l i) (Z wr,n,j> > <L
1

i=1

Write
_CII |r+, i:l,._.,n_l’
==3lp" Iz, 1000 i=1,...,n—1,

so that if we replace w, , ; by 7;, then we are in the setup of Lemma 2. Thus
in view of (4.10), we may conclude by (2.11) that

llx(-) _O'r,n(XS . )”Lq[O, 1]
1

n—1
, ' 1.1
<Z (la;—a,,,| b7')? )”+c|1,,,n|'—“-p+q, 1<p<om,
i=1

1
max |ai_ai+1|b;1+c|In,n|r_a_1_a9 P= 19
1<isn—1

where ;+-=1 and where by definition @, :=0. Now, by (4.3) through
4.5),

(4.15)
6, —a;l = I, ol
= Wt s =t i) o= 01— £,
=n D =i+ 1) = (=) o= (=) = (=i = D)) 4
< cn‘/’(”%)(n—i)(/"”(”%)“, i=1,...,n-2

=1,
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and
(4.16) ly_s —a,| = |ay_1| = L, 1|0 < cn P00,

where ¢ = ¢(r, a, f8, p, q). Note that (4.16) is exactly (4.15) withi =n—1.
Now, if p = oo, then

b, = 37! ”pa"Lw(I,,,M) = 371pa(tn,i) = 371’17/3“(”_1‘)#“, i=1,..,n-1,

and if 1 < p < oo, then

1
i+l ?
1P% 110 = < [ (l—t)“”dt>

= (p+ 1) (1=, ) = (1 =1, 1) ?*)s
= (ap+ 1) 5 n P+ (n—i)Per+D — (n—i — 1) Fer+D);

> cn‘ﬂ(“i)(n—i)ﬂ(“%)‘%, i=1,..,n—1,
where ¢ = ¢(r, a, f8, p, q). Therefore for all 1 < p < oo,
b= en P Dm—iyfrp) -5 i1, -1,

where ¢ =c(r, a, f, p, q)-
Hence, if p = 1, then
4.17)

max |a;—a;,| bfl

i=1,..,n—1

<c max n—ﬂ(r-%—%)(n_l-)(/i’—l)(r+117)—1n/i’(oc+1)(n_i)—ﬁ(a+1)+1

i=1,..,n—1

=c¢ max n—ﬂ(r—on—l-%—%)(n_i)ﬂ(r—oc—1+$)—(r+%)

i=1,..,n—1

< en-Bl-a=147),p(r—a-141)-(r+})

and if 1 < p < o0, then

(4.18)

1

n—1 =
<z (|ai—ai+1|b:1)1”>
i=1

<c <nz_:1 (n_ﬁ(r+,1,)(n_l‘)(ﬂ—l)(r+‘11)—1nﬁ(oc+;)(n_i)_ﬂ(a+;)+;)p,>l,r
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_ cnfﬂ(rfocfé-!-%) <nz_:1 (n_l’)(ﬂ(roc;-i—;)(r+;)1+;)p'>pl'

< cnfﬂ(rfocfé+%)nﬂ(rfoc7%+$)7(r+$)71+é+17%

1
r—-

=cn 4.

Note that we used (4.3) in both (4.17) and (4.18). At the same time, using
(4.3) once more,

|In,n|r_“_ll’+% = n‘ﬁ(’—“‘};%) < n—r—%,
which combined with (4.17) and (4.18) turns (4.10) into

1
"x(')_o-r,n(x;')”L 0,1 <Cn_r_29
4([0, 1))

where ¢ = c(r, o, f, p, q). Similarly we obtain

1
x(-)—o, ,(x;- )”Lq((—l, op Sen T,

and (4.6) follows. This completes the proof of the upper bound in (1.6) for
l<g<2.

We have to improve the estimates for 2 < g < oo and we do it by apply-
ing discretization techniques. To this end, we first show that for each x
A:HWr

s
(4.19) 1) =6, (x5 )) wit i, <en 7,
where ¢ = c(r, o, B, p, q) and

w,(t) i=n" (1=l +n"'7, tel.
Observe that

¢ |1, Sm}n w,(2) Sma}x w,(t)< ¢, |14, i=41,.., +tn,
te tel,;

n, i

where 0 <¢; =¢;(f) <c, =c¢,(f). Forifweletrel, ;, 1 <i<nthen

min w,(t) =n~"'(1—1,,+n")'7

tel, ;
. p-1
n—i\# 7
=n'(—) +n*
n

=nFH(n—i)f+1)7

2 cllln,ila
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and

-1
max w,(1)=n""'(1—t,,_,+n?)7

tel,
. -1
- <<”_’+l>ﬁ+n—/3> ;
n

=n M (n—i+ 1)+ 17

<6 |In,i|'

Hence by virtue of (4.7) and (4.8) (with ¢ = 1), we obtain
"(x’( ) ) _O-r,n(xu; : )) W;lJr%”Ll(In'i) <c |In,i|r+$ Wy s i= + 1; ceesy + (n_ 1)5
and

14l g1yl
IXC) =0, (X5 ) Wi Yol am S € sl ™77,
where ¢ = c(r, a, f5, p, q). Therefore

n—1

14! 1 gLyl
"(x(')_o'r,n(x;')) wn1+q”L1[0,l] < Z c |Iﬂ,n,i|r+q COr,n,i-i_c |In,n|r * p+qa

i=

In view of (4.11) and (4.12), we are again in the setup of Lemma 2 and we
may conclude that

I(x(-) =0, (x5-)) Wi Filly o,y S en™ 7w
A similar estimate is obtained for the interval [—1, 0], by virtue of (4.7),
(4.9), (4.13), and (4.14). Thus (4.19) is established.
We proceed now to prove that

(4.20) d (AW, )y, < en "y, 2<g< o,

where ¢ = c(r, a, 5, p, q).

Forn>11let X, ,:=2X, (I) be the space of continuous piecewise poly-
nomials { € C(I), which are polynomials of degree < r in each interval I, ;.
Then clearly dim X, , =2rn+1. For n=1 we take 2, , := P,_,, the space
of all polynomials of degree <r, ie., dimZX,; =r. Evidently, for any
n=1,2 ,<c2% ,. We will prove the existence of integers A=A(r, «,
p, 9 >1, a=a(r,a, p,q)>0 and subspaces X, =X, ,m, of dimension
r<dim X,,» <a2"< 2™ n> 1, such that
4.21) EU W, Zop)y, <2707 2<g<on,

p, o>

where ¢ = c(r, o, f, p, q).
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For n > 1 we subdivide the intervals I, ,,,i=1,...,n—1by

tn,+i_tn,+(i—l)
tn,ii,k:ztn,i(i—l)-i_%k’ k=09 19"'3 r,

and note that ¢, , ,=¢,,7;and ¢, ,, =1,,,i= *1,..., £n. Define a one-to-
one correspondence between the spaces X, , and R*"*! by the invertible
discretization operator

Ar,ﬁ,q,n: Er,n 3(-’y= (y—nra ces V15 Y05 V15 -ees ynr) € R2nr+1,
where

_b . £-1

yy=mr)"a(nr—j+1) (2, ),
j=G—=Dr+k, k=0,1,...,r, i=1,...,n
_E . -1

yi=(nr)y~a(nr+j+1) 7 {(Z, 1),
j=—(@{-O)r—k, k=0,1,..,r, i=1,..,n

Note that altogether j =0, +1, ..., +nr. The inverse operator is

Arii‘i,q,n: IRan+1 3y= (y—nn cees Y15 Vo5 Vis oo s ynr) _)Cezr,na

where { is uniquely defined by the interpolation equations

£ . _B-1
C(tn,i,k)=(nr)q(nr_.]+1) 7 Y,
j=G—Dr+k, k=0,1,...,r, i=1,..,n

£ . _B-t
(i) =(r)a(nr+j+1)" 7 y,,
j=—({-D)r—k, k=0,1,..,r, i=1,.., %

Similarly to what was shown in [8, Theorem 1], it follows that

"C”Lq = ”Ar, B.q, nZ.:"l;m‘"1 ) C € Er,n'

We proceed as in the above proof, fixing an integer N € N and prescribing
integers m, :=r and m, <2r2°+1,v=1,2,..,N. Let L™, v=1,2,..., N,
be subspaces of R*> *! of dimension dim L™ = m,, and set

2m=Xx 4, 2= A oL, v=1,2,..,N.

Then 2™ < X, »» and dim 2™ =m,,v=0, 1, 2, ..., N. If we denote

N
2o N = span < U Z"‘V),

v=0
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then 2™ "™ < X~ and dim 2™ "™ <my+ --- +my. BEach x eAﬁr“WI’N
may be expanded into

x(1) = x(t) =0, 7 (x; t)+ar,1(x;t)+§ (0, 2(x;0)—0, y-1(x;1), tel,

v=1
where o, ,»(x;-) € 2, ,». Therefore we conclude that

4.22)
E(x, 27> < |Ix(-) =0, 7(x;5-)|g,

N
+ ¢ z E(A"s B.q. ZV(O-r, 2v(x; . ) - ar, 2"71 (x5 ° ))9 Lmv)12,2v+l .

v=1

We will show that for all x e AL“W;N, the splines g, ,+(x;-)—0, »-1(x;-)

are mapped by 4, ,,, into the ball ¢2-C+V9"B¥?*1  where ¢=
c(r, a, B, p, q). Indeed, it is readily seen that for each k=0, ..., r,

r2) P 2= (=D R+ el il im0, 2)
where ¢ = ¢(r, ). Hence,

(423) "Ar, B.q, ZV(ar, 2V(X; . ) —0, -1 (xa . ))”I?2v+1

"
=Y Y 2) 2= (- r+k)+ DT
i=1 k=0
X|o, (x5 ty ;1) — 0, p-1(x; Ly, i,k)l

r

+ i Y (r2) (2= |G+ ) r—k+ DT

i=-2" k=

X|o, 2(x; bty i 1) — 0, 2-1(X;5 by i)
2 r

1
<c z 2 |Ly il o, (x5 by ) — 0, -1 (X5 00
i=1 k=0
-1 r L
+c Z z |12V,i|} Iar,ZV(x; tz“,i,k)_o'r,2“*1(xQ Ly i,k)l‘
i=—2" k=0

Evidently,
.
Z o, (x5 by i 1) =0, »-1(X5 Ly )
k=0

(r+1) ||‘7r,2V(X; -) _O'r,zv“(X; : )”Lw(le,i)

<
<c |12V,i|_1 lo, »(x;-) —0, y-1(x;- )”Lluzv,,.)a
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where ¢ = c(r) and where we used the fact that o, ,»(x;-)—0, -1,y is a
polynomial of degree <r on I,»,. Now, it is readily seen that

|y ;| = ewyr(£) = cwp-1(2), tely,,
whence
Ly |l 2 (5 ) =0, 21 (65 M
Sy |70 1) =0, 2 (5 s
1L |7 () = 1065 i
< l(x(-) =0, 20650 Wi il
e G ) =01 (55)) Wyl
Therefore, (4.23) and (4.19) yield

(4.24)
”Ar, B.q.2" (O-r, 2" (X; ° ) - Gr, P (x; ° ))"l%’2er1

<c z | 1+"||0'r2(x )= G, 2~ 1(x; )"Ll(lzv,)
i=—2"

141

<l ) =0, (x5)) Wil +e I(x(-) — 0, 2(x3)) w7,
<e2 (r+q)v,

where ¢ = ¢(r, a, 8, p, q). Hence, by virtue of (4.22),

(4.25)
EATW, , Zmom) < sup [1x(-) =0, 0v(x; ),
xeAZrHW;w
S -+ vg (g
c Zl 2— r+a VE(B%rZ +1,Lmv)l;,2v+l’

where c =c(r, o, B, p,q). f we set m, :=2r2"+1,v=1,2,...,n—1, that is,
L™ :=R>**!, then clearly

E(B™*, L™)prn =0,  v=1,2,..,n—1.
Also, by (4.6),
() =0, (x5l <20V, xe AW
Thus, we take subspaces L™ such that

v v
E(B%rz +13 l‘mv)lf]rzhrl < 2dmv(B%r2 +1)l‘21r2"+1 ] v=mn,..., N,
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and we obtain by (4.25)
(4.26) EA W, 2o "1,

N
<2 )V pe 3 2 (g, (BYF e,

vV=n

where ¢ = c(r, o, f, p, q).
In order to obtain the upper bounds that we require we now apply a
standard technique. Namely, we fix a positive integer A such that

1 1 1 1\!
— > _ _
r 3 l—1>0 and l/<r+2><r+q>

and put N := An, n € N. Set
mv:=2r[2%], v=mn,.., N,

where [u] is the integer ceiling of ue R. Evidently, m,+m, + --- +my
< a2", where a = a(r, p, q) € N. Hence, by (4.3) and (4.26) we have

4.27) E(AF W, Zmoemy,

(D)o 3 9 (eh) V
<c2(+)npe 3 204, (BY ),

If 2 < g < o0, then we use Lemma G1 to obtain
d,(B});r < cnim™,
where ¢ = c¢(g). Therefore by virtue of (4.27),

(4.28) E(47W, ,, Zmom),

D,

N
<c2—(r+%)n+ Z 2—(r+%)vdmv(B%rzu-l)1‘2;2‘;+1

V=nh

where ¢ = c(r, o, f, p, q).
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For the case ¢ = oo we observe that B} < B’, so that applying Lemma K
and (4.27) we obtain

(429) E(U'W, , o),

p,a> &9

N
$C‘2_(r+%)"+c Z 2_rvdi(B§r2v+l)l§0’2V+l

vV=n

N
Scz_('+%)”+c Z 2_rvdmv(B§r2v+1)1§Oer+1

vV=n

1 N 1
<2 C+)ny e Y 27"m;? <1+log

vV=n

2r2V+1>3

1 N 1N-y N-v 3

Scz—(r-{-?)n_i_c Z 2*r"27§ﬁ(1+10g 2V7ﬁ)§
1

in
— -+ ny co—37Em y 2-C=320) (1 4 log 27270-m)3

V=h

An
< 027(”7)"—!-627(”2)” z 2*(’*§ﬁ)("*")(v_n+ 1)2

< 02*(’+%)"+C2*('+%)” Iw t%Z*(’*%ﬁ)‘ dt
1

< 027(r+%)n’
where ¢ =c(r, a, 5, p). If we let X' ,n := X" "~ then (4.21) follows from
(4.28) and (4.29) and in turn implies
A (A7 W7 )y, <27 () 2<g<o,

where ¢ =c(r, o, B, p, q). It is a standard technique now to obtain (4.20).
This concludes the proof of the upper bounds in (1.6) and thus completes
the proof of Theorem 2. |

5. THE LINEAR WIDTHS OF THE CLASSES 40", ,
IN L,-AUXILIARY LEMMAS

We begin by recalling some lemmas.

Lemma G2 (See[1]). Letn,me Nbesuchthatm <n,andletl < p<qg<
00, excluding the case p=1 and q = 0. Then
5.1

n lin 45(m,n,p,q), 1<P<Q<P’a
dm(BP)i; X?’(m, n, P, ‘1) ::{

D(m,n,q',p"), max{p,p'}<g<o,
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where ®(m, n, p, q) is defined by (2.1), and 5+, = 1. The constants in these
two-sided estimates do not depend on m and n.

The following is the corollary of [12, Lemma 3].

LeMMA M1. For all n, m € N such that m < n, we have

1
—5 2
cn 2 n<m
1i > B
dM+1(B2n+1)llZ};lt+l X 1 _3 2
cnm-2, n=zm°,

where ¢ > 0 is an absolute constant.
Also, as a corollary of [ 12, Lemma 5], we get
LEMMA M2. For all n, m € N such that m < n we have
d, (B} < em*(log )%,
where ¢ > 0 is an absolute constant.

We need one new result

LemMA 4. Let n, me N be such that m<n and 2<p<q<o or 2<
L. < g< 0. Then

dm(S;(E"))ji">z—é<1—;> n()

Proof. Let X be real linear normed space with X* its dual, and let
L™ :=span{x, };_, be an arbitrary subspace in X. Then by definition

d, (W)= inf Linf  sup [x— ) <xp, XD x
{xatko1SX g tio1SXT xew k=1 X
Therefore
d,(S$(E")y = inf inf sup - Y (€D, x) (D),
COsl, €N el cest @ k=1 1,

where (-, -) is the usual scalar product. Since

— Y (€9,%¢®|  =sup
k=1

lo  yeB]

(x—f (E®, x) c<k>,y>|,
k=1
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it follows that

swp 2= % @, 0] = sup  sup < — 3 W, %), )
xe S5 (E™ k=1 Iy xeSS(E") yeB} k=1
—sup  sup < — Y (0,0, )
yeB] xeS; (E") k=1
—sup sup < -3 @, x>,
yeB] xeS;'(E") =
so that
d,(S5(E");r

= ® inf (k)i'gf . sup  sup
(o1 sle {8 o1sh ysB'l' xeS;'(E")

(E.) €, )

(-2
(-2

Z
(5.2) sup |z, 0=zl sup <Wx>
153

xeS; (E") xe S5 (E")

= (k)i'gf . inf ~ sup sup
€ =1l {C=1S10 yeB! xesS(EY

||M§ TMi

(@), )|

For any z € R" such that ||z[|» # 0 we have

Zlzly inf - sup (e, x)].

lely =1 xess(E™
We claim that
(5.3) inf  sup (e, x)| =22

el =1 xess (E™
Indeed, let e = (e,, ..., e,) be an arbitrary vector such that e? 4 --- +e2 =1,
We divide coordinates of e into two sets, that of the negative coordinates
and that of the nonnegative ones. Let e¢; <0, 1 <Vv<N and ¢ =0,

N <v<n. Then either efl+~~~+e,N>§, or e;  +---+e; ;, so

INt+1
without loss of generality, we may assume the former Hence setting
x;, :=(e} +--+e}) e, 1<V<N and x, :=0, N <v<n, we obtain
x=x(e)e S+(E”) and |(e, x)| =>27"/% and (5.3) is proven.

Now, by virtue of (5.2) and (5.3) we conclude that

d,(S$(E")j =272 inf oinf  sup |ly— Z €%, ) 5<k>
S RS A FARET yeB| k=
1 m
=22 inf inf sup Hy— (C®, y)e®
f(k)}k el (O e yeB!| kgl 13

=277d,,(B})\ >277d,(B})s.
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Hence by Lemma KPS,

1
2

(54 du(sEnE =27 (12,

If 2< p<g< o, then 7 (E") =S, (E") and ||x];» > ||x||;~ . Then by (5.4) we
have

1

:5) d,(SFEE > d, (S5 (E)E > 2—;<1_%n>2_

On the other hand, if 2 < p’ <g < oo, then n'/>"/?S}(E") = S (E") and
lxll;z = llx];~ . Therefore, by (5.4) we obtain

d,(S; (B > n2sd,, (ST (M) > 27 < 1 —%> nis.

Combining this with (5.5) yields Lemma 4. |

6. THE LINEAR WIDTHS OF THE CLASSES 4, W, , IN L,

We are in a position to prove our assertions.

Proof of Theorem 3. The upper bounds in Theorem 3 follow from
Theorem KL2, and the lower bounds for the cases 1<g<p<oo,
1<p<g<2, and 2<¢<;Z;<o0 are immediate consequences of
Theorem 1 since d,(44 W}, )7 = d, (AW, )1, -

Thus we concentrate on the two remaining cases, namely, 2 < p<g< o0
and 2 < p' < g < .

Since AW, = AW, ., 0 < & < o0, it suffices to prove that

P,
6.1) d (LW > en s, 2<p<q< o,
and
(6.2) dn(Aiw;)gZ%n%;f;, 2<p <q< o0,

Just as in the proof of Theorem 1 we obtain,

(AW > CN~*rad, (ST(EM)H,  0<s<r,
q
where C = C(r, p, q). Thus, substituting N = 2n, we get

d, (45 W) > C(2n) "5 id, (S (E))
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which by virtue of Lemma 4 turns into

daw > cem it (1= ) e G-

n
1——
2n

where ¢ = ¢(r, p, q¢) and (6.1) and (6.2) follow. This completes the proof of
Theorem 3. |

We proceed to the proof of Theorem 4.

Proof of Theorem 4. Again, the lower bounds follow from Theorem 2,
since

d (AW, )1 2 d (AW, )y,

Hence we only have to prove the upper bounds. We observe that all the
operators which we used in the proof of Theorem 2 were linear. Therefore,
just as in that proof we can obtain,

(6.3) A4 W ) <en s, 1<q<2,
and for 2 < ¢ < o0,

(6.4) .
B4 W), g, Zmoemin < 2048 e 31 2-(vi) g, (BY ).

p, o>
vV=n

If 2 < g < o0, then we prescribe the integers A, N, and m, as in the proof of
Theorem 2. For (p, q) # (1, ), we apply Lemma G2 to (6.4) and obtain

(6.5) EUF W, roemyin < ea e 2 < g <o,

D,

where ¢ = c(7, a, p, q).
In case (p, q) = (1, o0) we take

22
M =
[/1+1n]’

and note that

N—v
V< c[27T]3 v=n,..,M—1,
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where ¢ > 0 is an absolute constant. We rewrite (6.4) in the form

M—-1
(6 6) E(Ar+1W1 " o - mN)lm <cz—rN+c Z 2—rvd (B2r2"+1)1127’lzv+1

+e Z 2—rvd (BZrZ +1)Il2anV+l,

v=M

where ¢ = ¢(r, a). Lemma M1 yields

M-1 ) i M—-1 LN
Z 2- rvd (Bzrz +1) 12n2"+1 <c Z 2 DI
v=n v=n

M-
1 2 11 )
=c2 271" E T27-1
vV=n

1 4

c2721-1")~ (’ 27 1)"

//\

= 02*(""5) n

And by virtue of Lemma M2 we have

N N
Y 27, (BY e <c2idin Y 272 (i) (log(2r27+ 1))
M

where we have used the fact that

+1
< - = . N.
=1 (v—n), v=M,...,N

Substituting the last two inequalities in (6.6), we obtain

E(Ar+lWr Z‘mo,nme)Il’;” <C2—(r+%)n,

Do

which together with (6.3) and (6.5) implies the upper bounds in (1.10) and
concludes the proof. ||
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